Signaling properties of a short-wave cone visual pigment and its role in phototransduction.

نویسندگان

  • Guang Shi
  • King-Wai Yau
  • Jeannie Chen
  • Vladimir J Kefalov
چکیده

Although visual pigments play key structural and functional roles in photoreceptors, the relationship between the properties of mammalian cone pigments and those of mammalian cones is not well understood. We generated transgenic mice with rods expressing mouse short-wave cone opsin (S-opsin) to test whether cone pigment can substitute for the structural and functional roles of rhodopsin and to investigate how the biophysical and signaling properties of the short-wave cone pigment (S-pigment) contribute to the specialized function of cones. The transgenic S-opsin was targeted to rod outer segments, and formed a pigment with peak absorption at 360 nm. Expression of S-opsin in rods lacking rhodopsin (rho-/-) promoted outer segment growth and cell survival and restored their ability to respond to light while shifting their action spectrum to 355 nm. Using the spectral separation between S-pigment and rhodopsin, we found that the two pigments produced similar photoresponses. Dark noise did not increase in transgenic rods, indicating that thermal activation of S-pigment might not contribute to the low sensitivity of mouse S-cones. Using rod arrestin knock-out animals (arr1-/-), we found that the physiologically active (meta II) state of S-pigment decays 40 times faster than that of rhodopsin. Interestingly, rod arrestin was efficient in deactivating S-pigment in rods, but its deletion did not have any obvious effect on dim-flash response shutoff in cones. Furthermore, transgenic cone arrestin was not able to rescue the slow shutoff of S-pigment dim-flash response in arr1-/- rods. Thus, the connection between rod/cone arrestins and S-pigment shutoff remains unclear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.

Activation of the visual pigment by light in rod and cone photoreceptors initiates our visual perception. As a result, the signaling properties of visual pigments, consisting of a protein, opsin, and a chromophore, 11-cis-retinal, play a key role in shaping the light responses of photoreceptors. The combination of pharmacological, physiological, and genetic tools has been a powerful approach ad...

متن کامل

Thematic minireview series on focus on vision.

Human visual perception is initiated through absorption of light by photoreceptors in the retina. To maintain vision, 11-cis-retinal, which is photoisomerized to all-trans-retinal, is continuously regenerated through the retinoid (visual) cycle. In the first minireview of this thematic series, entitled “Chemistry and Biology of Vision,” I describe the visual system from both chemical and struct...

متن کامل

Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.

Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. H...

متن کامل

Vertebrate Bistable Pigment Parapinopsin: Implications for Emergence of Visual Signaling and Neofunctionalization of Non-visual Pigment

Opsins are light-sensor proteins, each absorbing a specific wavelength of light. This, in turn, drives a specific G protein-mediated phototransduction cascade, leading to a photoreceptor cell response. Recent genome projects have revealed an unexpectedly large number of opsin genes for vision and non-visual photoreception in various animals. However, the significance of this multiplicity of ops...

متن کامل

RGS9-1 is required for normal inactivation of mouse cone phototransduction.

PURPOSE To test the hypothesis that Regulator of G-protein Signaling 9 (RGS9-1) is necessary for the normal inactivation of retinal cones. METHODS Mice having the gene RGS9-1 inactivated in both alleles (RGS9-1 -/-) were tested between the ages 8-10 weeks with electroretinographic (ERG) protocols that isolate cone-driven responses. Immunohistochemistry was performed with a primary antibody ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 38  شماره 

صفحات  -

تاریخ انتشار 2007